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Structure of Short-Range Ordered Alloys. II. Ordered Zones in a Disordered Matrix* 
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Department of Physics, Technion - Israel Institute of Technology, Haifa, Israel 
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A diffraction theory is developed for the model of ordered zones embedded in an otherwise disordered 
binary alloy. Evaluation of the resulting lattice sums gives an equation for the diffuse scattering every- 
where in reciprocal space except under the fundamental lines. From the experimental diffuse intensity 
one can calculate the relative volume of the ordered zones in the whole crystal, their mean sizes along 
each of the crystallographic axes, and the distribution of these sizes. A set of relations between the 
Warren short-range-order parameters O~lmn and the size of the ordered zones is also obtained. 

Comparison with experimental ~mn given in the literature show that a 50 at.% CuAu alloy quenched 
from 500°C contains ordered zones in a disordered matrix. Similar results were obtained for a 50 at.% 
CuPt alloy held at 890°C or quenched from 930°C. In a Cu3Au alloy held at 450°C the calculations 
show the existence of ordered zones with a size of (3 x 3 x 3) unit cells, in accordance with the results 
of computer simulation work published in the literature. 
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Introduction 

Many of the physical properties of binary alloys depend 
on the exact correlation between the two types of atom. 
For a stoichiometric alloy which undergoes an order- 
disorder transformation, one of the possible models is 
that, high above the transition temperature, the solid 
solution includes ordered nuclei in an otherwise dis- 
ordered matrix. This picture seems to have some sup- 
port in studies of the kinetics of ordering in several 
binary alloys (Krivoglaz & Smirnov, 1964). When the 
temperature is lowered these nuclei grow and near the 
critical temperature they become big enough to touch 
each other and give the well-known anti-phase domains 
(Beeler, 1967). 

We develop here an X-ray diffraction theory for al- 
loys which include ordered zones embedded in a dis- 
ordered matrix and compare this theory with the results 
of the diffuse scattering measurements in different sys- 
tems. By a 'zone' we mean a precipitate coherent with 
the lattice of the matrix and without any distortions, 
similar to the Guinier-Preston zones in A1 rich Ag-AI 
alloys in the very first stage of the precipitation of Ag 
(Guinier, 1959). The matrix is assumed to be com- 
pletely disordered. On the other hand, the degree of 
order in each zone may be different for different zones 
and is taken as such. Also the zones are assumed to 
be distant enough from one another for interference 
effects between them to be negligible. Edge effects of 
the zones are also not included. 

Theory of diffraction 

The structure factor of a unit cell in an ordered zone 
can be written as: 

* This work represents part  of the D.Sc. dissertation of  
M. Greenholz.  

F= F~ + S F2 (1) 

where/71 is the average structure factor of disordered 
unit cells, and S is the order parameter. The atoms in 
the disordered volume of the crystal are distributed 
randomly. We designate the structure factor of a unit 
cell in this disordered volume by Ft. 

We assume in our treatment that each zone is fully 
ordered, the zones being embedded in a random 
matrix. 

In this case the structure factor of the whole crystal 
takes the form: 

F =  ~ Fa exp ( -  2rcik. Rm) + ~ SsF2 exp ( -  2~zik. Rs) 
m s 

+ ~ (Fr-  F1) exp (-21rik.  Rr). (2) 
r 

k is the wave vector with the absolute value [k[= 
2 sin 0/2, where 0 is the Bragg angle, and 2 the wave- 
length of the radiation. Rm, Rs and Rr are vectors from 
the origin to the mth, sth and rth cell respectively. 

The first term in (2) is a sum over all the unit cells 
of the crystal. The second term is a sum over all the 
ordered cells only, and the third term is a sum over all 
the disordered cells. This last term appears because 
in the first term we have an 'average' atom (i.e. made 
out of half gold and half copper in CuAu) at each 
site of the crystal, whereas in a disordered crystal there 
is either an A atom or a B atom at each site distrib- 
uted at random. 

We find the intensity of the diffracted beam by 
multiplying (2) with its complex conjugate. In this way, 
and by taking the second and the third terms together, 
we get: 

I =Ii+Iz+I3 

where 
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I1 = IF I 2 exp [2nik. (Rm'- Rm)] 
m' m 

12=2 ~ ~ FxF~Ss exp [2nik. (Rm-  Rs)] 
m s 

+ 2 ~ ~ FI(Fr- FO* exp [2nik. (Rm-  Rr)] (3) 
m r 

I3=1F212(S) z ~ ~ exp [2nik. (Rs , -  Rs)] 
s t ,v 

+ 21F21 ~ ~ S~(Fr-F~)* exp [2nik. (Rs-Rr)]  
r 

+ ~ ~ (Fr-  F1) (Fr"- F~)* exp [2nik. ( R r ' -  Rr)]. 
r ~ t" 

Here ( R m ' -  Rm) is the vector from the mth cell to the 
m'th cell, and likewise for the other similar expressions. 

In (3)/1 gives the fundamental reflexions. 12 is zero 
everywhere in intensity space except under the fun- 
damental lines./3 then gives the intensity of the diffuse 
scattering everywhere except under the fundamental 
lines. 

In the expression for 13 the second term is equal to 
zero because Fr = F1 and so (Fr-  F1) = 0. The third term 
in/3 gives the well-known Laue monotonic scattering 
for the disordered volume of the crystal, and is given by 
ILM(dis)=nr(mAmB(fa--fB) 2 (Greenholz & Kidron, 
1970), where nr is the number of atoms in the dis- 
ordered volume, fA, fB are the scattering factors of A 
and B atoms respectively, and mA, mB are the atomic 
fraction of A and B atoms respectively. 

The diffuse intensity 13, now called ID, can then be 
written as: 

13 = ID  = / o r d e r  + n r m  A m  B ( f  A - -  f B)  2 

where 

Iorder = Irl2(S) 2 ~ ~, exp [2nik. (Rs , -  Rs)]. (4) 
g s 

Let the ordered zones have the form of parallel- 
epipeds with length of N~, N2 and N3 unit cells each 
side. Then using the usual notation: 

k = h i b l  + h z b 2  + h 3 b 3  

R 8 '  - R 8  = l a l  + m a 2  + n a 3  

we can rewrite /order as follows: 

N--1 

Iorder = IF212(S) 2 ~ ~ ~. (N1-  Ill) (N2-  Im]) (N3-  [n]) 
1 m n 
- - ( N - - l )  

exp [2ni(lhl +mh2 +nh3)] 

where (Nx- ] l l ) (Nz- ]m] ) (N3- ]n ] )  is the number of 
times that (Rs , -  Rs) appears in (4). 

In an f.c.c, or b.c.c, crystal Ioraer is periodic in 
(2h~, 2ha, 2h3), and so we write the Fourier series in 
'double' reciprocal space: 

Io de (hl, [F2(h,, h;)12(g)2 
× 2: Y (U , -  I 1) (U2-1ml)(U3-1.O 

I m n 
exp [2ni(lh] +mh'2 +nh~)] (5) 

t • # 

where h 1, h 2 and h 3 are equal to 2h~, 2h2 and 2h3 re- 
spectively. 

It has been shown (Cowley, 1950) that the diffuse 
scattering due to short range order, for an f.c.c, or 
b.c.c, crystal, can be written as: 

I D= nmAmB(fA--fn) 2 ~ ~ ~ ~,mn 
l m n 

exp [2:n:i(/h] +mh" z +nh~)] (6) 

where the sum is over all the crystal; n is the total 
number of atoms and mA, mB are the atomic fraction 
of A type atoms and B type atoms respectively, o~lmn 
are the short range order parameters. 

From (6) and by comparison with (4) we find that 
O~lmn are the Fourier coefficients of 

nmAmB(fA--fB) 2 

If we define 

t Hr 
~000 ~ ~000 - -  - -  

Iorder + nrm Am B(f A -- f B) 2 nr 
.. 

n m  A m  B ( f  A - -  f B)  2 #l 

/ o r d e r  

nm Am B(f A " f B~ " 

OQ,nn=OQmn for (lmn)¢(O00) (7) 

then the Fourier coefficients of /order will 
nmamB(fA --fB) 2 

be the parameters ~z,,,,. Since ~000 = 1 by definition we 
also have 1 - n u n  = ~00o. This quantity gives the amount 
of atoms in the ordered zones. 

We designate the Fourier coefficients of the function 

nm nm B(f a -- f B) ~ 

as A~'m'n" and the Fourier coefficients of the function 

(~q)a ~ ~, ~. (N1-  Ill) (N2-  [m[) (N3-  In[) 
I m n 

exp 2ni(lh~ +mh" 2 +nh~)] 

as Bzum2n. Then from the convolution theorem we 
find that the Fourier coefficients of the product of the 
two functions, i.e. of 

I9 
)-z-mAmB(f a " f B) 2 

will be the parameters 

C¢;mn = ~ ~ ~ Al'm'n" . B, mn-i'm'n" (8) 
I t m "  l l  t 

where 

B2 2m2. =(S)2 Z Z (N,- Itl) (N2-b.I) (N3-b,O 
1 m n 

and 
Az'm'n' are the Fourier coefficients of 

Fi 
nmamB(fA--fB) 2 
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Formula (8) gives the Warren short-range-order par- 
ameters from the size of the zones, the composition of 
the alloy, and the structure of the ordered phase, i.e. 
from the parameters of our model of the solid solution. 

The ordered zones may have a distribution of their 
sizes. Here we assume a normal distribution for the 
size of the zones along each one of the crystallographic 
axes, i.e. for N~, N2 and N3, and take them as inde- 
pendent random variables. Then from the definition 
of B2t,2m,2n in (8) we see that its expectation value 
will be given by the sum of the products of the ex- 
pectation values of (S) 2, (NI - I l l ) ,  (N2-lml)  and 
(N3-Inl), i.e. by the products of their mean values: 

= (S )  z . ~ ~ ~ (N1- l iD (N2-[m[) (N3-In[) 
1 m n 

where N~ is the mean value of N1, etc. 
As the Fourier coefficients Avm'n" are given from 

calculated values, taken as precise, the expectation 
values of ~,,~ will be given once more by equation (8), 
except that this time we write (Blmn--l 'm'n')  instead 
o f  B l m n  - -  l ' m ' n ' .  

Discussion of the results 

The equations (8) give certain relations between the 
c~,~n themselves for the model of the ordered zones, i.e. 
from a given set of experimental c~,,~ we can say whether 
a model of ordered zones embedded in an otherwise 
disordered matrix is a realistic one for the given alloy 
and its heat treatment. From (8) we also see that ~,,~ 
are proportional to (g)2, i.e. the amount of order in- 
side the zones does not affect the relations between 
different ~tm~" 

If ~zmn are measured quite accurately then any three 
of them (except c~000 = 1) will be enough to calculate 
N1, N2, N3, i.e. the average size and shape of the or- 
dered zones. From these values one can calculate nr/n 
through c~000 in equations (7) and (8). 

The theory has been applied to a few systems where 
cqmn have been measured. Equation (8) shows that if 
one measures at least three ~zmn in different crystallo- 
graphic directions (e.g. cq00, c~010, c~001) then it is pos- 
sible to calculate N1, N2, N3 independently. The ex- 
perimental O~lmn given in the literature are values aver- 
aged over all the possible directions in space. The 
reason is that diffuse scattering measurements are very 
tedious, and consequently these measurements are car- 
ried out only for a small part of reciprocal space. The 
diffuse intensity in the whole reciprocal space is then 
obtained from symmetry considerations. But if there 
are ordered zones in the specimen which do not have 
the symmetry of the whole crystal (e.g. platetets in a 
cubic crystal) then the averaging of cqmn for all the 
directions in space prevents the possibility of finding 
N1, N2, N3 different from one another. For this reason 
we assumed in our calculations tha t /q l  = / ~ 2 = J V 3 - - / V .  

To calculate ~ it is enough to know only one ~mn. 

But using the different ~zmn given from the experiments 
we can find the distribution of/V, i.e. how many or- 
dered zones there are with a volume of 1 unit cell, 
how many there are with a volume of 2 × 2 x 2 = 8 unit 
cells, etc. 

Comparison with experimental results 

We took the experimental ~tmn given for CuAu (Rob- 
erts, 1954). In this work the diffuse scattering was 
measured from a specimen held at 425 and at 525 °C, 
and also after the specimen was quenched from 500 °C 
to room temperature. Equations (8) could not be solved 
consistently for the measurements at the two high tem- 
peratures, i.e. the back calculated OClmn were very dif- 
ferent from the experimental ones. It is concluded that 
in these two cases the simple model of ordered zones 
in a disordered matrix is not valid. Here there could 
be anti-phase domains which fill up almost all the 
volume of the crystal, or there could even be ordered 
zones which are very close to one another and which 
consequently should exhibit interference effects in the 
diffuse scattering. 

On the other hand, using equations (8), we found 
that the ~, (i denotes the shell of neighbours) given for 
CuAu quenched from 500°C are representative of or- 
dered zones in a disordered matrix. The results are 
given in Table 1. One sees that there is a good fit be- 
tween the experimental ~, and the calculated values. 
The calculations also give a'ooo=l-nr/n=0"32, i.e. 
about one-third of the volume of the crystal is in the 
form of ordered zones. The mean size of the ordered 
zones is about (3 x 3 x 3) unit cells. This result is similar 
to that found from the statistical theory of diffraction 
(Greenholz & Kidron, 1970). 

Table 1. Observed and calculated ~ for  CuAu 

E x p e r i m e n t a l  
~ ( R o b e r t s ,  1964)  C a l c u l a t e d  

~1 - 0 " 1 5 8  - 0 - 1 5 8  
~2 0 . 2 1 0  0 . 2 2 4  
~3 - 0"048 - -  0"050  
0~ 4 0 . 1 5 3  0 .143  
~5 - 0 . 0 5 0  - -  0 .043  
~6 0 .093  0 - 0 9 2  
~7 - 0 .035  - -  0 . 0 2 8  
~s 0"070  0"092  

Similar calculations were carried out for CuPt. Here 
one has a set of c~ (Walker, 1952) for a specimen held 
at 890 °C, and a set of c~ for a specimen quenched from 
930°C. The results of the calculations are given in 
Table 2. There is a very good fit between the calculated 
and experimental e~. For the quenched specimen the 
mean size of the ordered zones is 1-66 ordered unit 
cells, i.e. about 3.32 a where a is the lattice parameter 
of the disordered crystal. The total volume of the or- 
dered zones is about 40 % of the volume of the crystal. 

For the specimen held at 890°C we find 1.10 or- 
dered unit cells, i.e. about 2.2 a for the mean size of 

A C 26A - 2 
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Table 2. Observed and calculated ~ for CuPt 

Experimental Experimental 
0c~ (Walker,  1952)  C a l c u l a t e d  (Walker,  1952) Calculated 

Quenched 930°C Quenched 930°C Held at 890°C Held at 890°C 
ctt 0"00 0.00 0"00 0 . 0 0  
(X2  - -  0 . 2 8  - 0 . 2 8  - 0 - 2 0  + 0 . 0 6  - 0.20 
~3 0.00 0.00 0.00 0"00 
~4 0.20 0.23 0.12 + 0.05 0.11 
us  0.00 0"00 0.00 0 - 0 0  
~6 - 0.14 - O. 14 - 0.06 + 0.03 - 0.06 

the ordered zones. The relative volume consisting of 
the ordered zones is about 37 %. 

The diffuse scattering of disordered Cu3Au has been 
measured (Cowley, 1950; Moss, 1964). Calculations 
were carried out on the results of Moss for a specimen 
held at 450°C. Table 3 gives the calculated e~ along 
with the experimental values. The fit for ctt and e2 is 
perfect, but not very good for the other cq. The relative 
volume occupied by the ordered zones is found to be 
77 %. By a least-squares analysis, the distribution of 
the size of the ordered zones was calculated. It was 
found that about 60 % of the ordered volume is made 
up of zones with a size of (1 x 1 x 1) unit cells, and 
about 34% of it is in zones with a size of (3 x 3 x 3) 
unit cells. There are no zones with a volume of 
(2 x 2 x 2) unit cells. 

new e~, with absolute values somewhat higher than the 
first set of m. These new ct~ are the values given in his 
paper. 

Gehlen & Cohen (1965) have done some computer 
simulation work to find the substructure of disordered 
alloys. They took the experimental ct~ given by Moss. 
In the case of Cu3mu held at 450°C they found or- 
dered zones in a disordered matrix, the zones having 
a dimension of about 12 A, i.e. their size is about 
3 x 3 x 3 unit cells. This is exactly the size that we found 
here for the zones which make up a total of 34 % of 
the ordered volume. The other part of the ordered vol- 
ume is made up of zones with a volume of 1 unit cell. 
These are tiny ordered regions and seem to be smaller 
than the regions defined as 'ordered' by Gehlen & 
Cohen in their computer simulation work. 

Table 3. Observed and calculated ct~ for Cu3Au 

Experimental 
~, (Moss, 1964) Calculated 
~1 -0-195 -0-195 
~2 0.215 0.215 
~3 0"003 --0"019 
0C4 0"077 0"114 
~5 - 0.052 - 0.040 
~6 0"028 0"076 

Before discussing these interesting results we should 
mention that Moss calculated the parameters cq twice. 
In his first calculation he finds for C~o0o the values of 
1.14, 1.28 and 1.40 for the samples held at 450 and 
405 °C, and quenched from 800 °C, respectively. Owing 
to the fact that c~000 should be equal to 1, and assuming 
that he might have some parasitic scattering, Moss 
subtracted 0.14, 0.28 and 0.40 from each of the inten- 
sity values. In doing the calculations again he found 

The authors wish to express their thanks to Professor 
H. Lipson, Dr D. T. Keating, Professor E. S. Machlin 
and Professor B. Post for interesting discussions. 
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